

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 25.02.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

a Consider the function $f \in L^1(\mathbb{T})$ defined as the periodization of

$$f(x) := x(2\pi - x). \quad (1)$$

Calculate the Fourier coefficients of f and use them to prove that

$$\sum_{k=0}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}. \quad (2)$$

b Let σ be a positive real number and $\mathbf{v}, \mathbf{u} \in \mathbb{R}^d$. Consider the function $g_{\sigma, \mathbf{v}, \mathbf{u}}$ in the space $L^2(\mathbb{R}^d)$ with $d \in \mathbb{N}$ defined as

$$g_{\sigma, \mathbf{v}, \mathbf{u}}(\mathbf{x}) := \left(\frac{\sigma}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\sigma}{2}|\mathbf{x}-\mathbf{v}|^2 + i\mathbf{u} \cdot \mathbf{x}}. \quad (3)$$

Then prove that $\hat{g}_{\sigma, \mathbf{v}, \mathbf{u}} = e^{i\mathbf{v} \cdot \mathbf{u}} g_{\sigma^{-1}, \mathbf{u}, -\mathbf{v}}$, i.e.

$$\mathcal{F} \left[\left(\frac{\sigma}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\sigma}{2}|\mathbf{x}-\mathbf{v}|^2 + i\mathbf{u} \cdot \mathbf{x}} \right](\mathbf{k}) = \left(\frac{1}{\sigma\pi}\right)^{\frac{d}{4}} e^{-\frac{1}{2\sigma}|\mathbf{k}-\mathbf{u}|^2 - i\mathbf{u} \cdot (\mathbf{k}-\mathbf{v})}. \quad (4)$$

Exercise 2

Consider V_1 and V_2 two normed vector spaces over¹ \mathbb{F} and $T : V_1 \rightarrow V_2$ a linear mapping. Define $\|T\|_{V_1, V_2}$ as

$$\|T\| := \sup_{v \in V_1, v \neq 0} \frac{\|Tv\|}{\|v\|}. \quad (5)$$

For a generic linear mapping T we have $\|T\| \in [0, +\infty]$. Prove that

$$\|T\| = \sup_{v \in V_1, \|v\|_{V_1}=1} \|Tv\| \quad (6)$$

$$= \sup_{v \in V_1, \|v\|_{V_1} \leq 1} \|Tv\|. \quad (7)$$

Prove moreover that the following are equivalent

a T is continuous.

b T is continuous in 0, meaning that for any sequence $\{v_n\}_{n \in \mathbb{N}} \subseteq V_1$,

$$v_n \rightarrow 0 \implies Tx_n \rightarrow 0. \quad (8)$$

c The quantity $\|T\|$ is finite, meaning that $\|T\| < +\infty$.

¹Here and in the following \mathbb{F} can be chosen to be either \mathbb{R} or \mathbb{C} .

Exercise 3 (Young Inequality)

Consider $p, q, r \in [1, +\infty]$ such that

$$\frac{1}{q} + \frac{1}{r} = 1 + \frac{1}{p}. \quad (9)$$

Let $f \in L^q(\mathbb{R}^d)$, $g \in L^r(\mathbb{R}^d)$; prove that

$$\|f * g\|_p \leq \|f\|_q \|g\|_r. \quad (10)$$

Hint: Consider the functions α, β, γ defined as

$$\alpha(\mathbf{x}, \mathbf{y}) := |f(\mathbf{y})|^q |g(\mathbf{x} - \mathbf{y})|^r, \quad (11)$$

$$\beta(\mathbf{y}) := |f(\mathbf{y})|^q, \quad (12)$$

$$\gamma(\mathbf{x}, \mathbf{y}) := |g(\mathbf{x} - \mathbf{y})|^r, \quad (13)$$

notice that

$$|f * g(\mathbf{x})| \leq \int_{\mathbb{R}^d} \alpha(\mathbf{x}, \mathbf{y})^{\frac{1}{p}} \beta(\mathbf{y})^{\frac{p-q}{pq}} \gamma(\mathbf{x}, \mathbf{y})^{\frac{p-r}{pr}} d\mathbf{y} \quad (14)$$

and that

$$\frac{1}{p} + \frac{p-q}{pq} + \frac{p-r}{pr} = 1 \quad (15)$$

to apply Hölder inequality.

Exercise 4

a Prove that there exists a positive real number C such that we have

$$\sup_{0 \leq a < b < +\infty} \left| \int_a^b \frac{\sin x}{x} dx \right| \leq C. \quad (16)$$

Hint: Consider the function

$$F(t) := \int_0^\eta e^{-tx} \frac{\sin x}{x} dx. \quad (17)$$

Deduce a bound on $F'(t)$ uniform in η . Apply the fundamental theorem of calculus for $F(0)$ to conclude.

b Consider an odd function $f \in L^1(\mathbb{R})$. Prove that for any such function we have

$$\sup_{0 \leq a < b < +\infty} \left| \int_a^b \frac{\hat{f}(k)}{k} dk \right| \leq \frac{C}{(2\pi)^{\frac{d}{2}}} \|f\|_1. \quad (18)$$

c Let $g(k)$ be a continuous odd function on the line such that is equal to $1/\log k$ for any $k \geq 2$. Prove that there cannot be an $L^1(\mathbb{R})$ function whose Fourier transform is g .